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An unusual bifurcation to time-periodic oscillations of a class of delay differential equations is investigated.
As we approach the bifurcation point, both the amplitude and the frequency of the oscillations go to zero. The
class of delay differential equations is a nonlinear extension of a nonevasive control method and is motivated
by a recent study of the foreign exchange rate oscillations. By using asymptotic methods, we determine the
bifurcation scaling laws for the amplitude and the period of the oscillations.
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I. INTRODUCTION

Delay problems have been formulated by physicists, en-
gineers, and applied mathematicians for more than a century
�1,2�. In its physical interpretation, a constant delay equation
describes the effect of a finite interval of the immediate past
on the present, and hence on the future. Delays are used to
ideally represent the effect of transmission and transporta-
tion. Any control system will certainly involve a delay be-
cause time is needed to sense the information and then react
on it. Delay equations have appeared in various disciplines
such as biology �3–7�, where the delay accounts for the ner-
vous reaction time, chemistry �8�, where a delayed feedback
is used to control a chemical reaction, mechanics �9�, where
machine tool chatter is caused by delay, nonlinear optics
�10,11�, where the delay comes from unavoidable optical
feedback, and car-following models where the driver finite
reaction time is taken into account �12–14�. Historically, the
study of delay equations started after the First World War
principally on account of applied problems that appeared at
that time. But the entire subject has grown considerably in
recent years due to the development of new mathematical
ideas �15,16� and the advances in our computational possi-
bilities �17,18�.

A typical phenomenon caused by the delay is the onset of
sustained oscillations. These oscillations are undesired in
machining processes or dense car traffic. But oscillations
generated by a delay are also the basis of important physi-
ological activities such as the respiratory control system
�4,19� or the insulin secretory oscillations �20�. An equation
describing the growth of a variable y at time t as a function
of its value at time t−� is called a delay differential equation
�DDE�. The fixed time interval � is called the delay or time
lag. A linear DDE that appears in many applications is the
following first order equation:

dy

dt
= a�y − y�t − 1�� , �1�

where time is measured in units of � �t= t� /��. Equation �1�
typically models a nonevasive control method where the
control force vanishes when the target state is reached �here

y=0� �21�. From an analysis of the characteristic equation, it
can be demonstrated that y=0 is stable for the interval 0
�a�1 �22�. The control method has been used to stabilize
unstable steady states in lasers �23�, electronic circuits �24�,
chemical reactions �25,26�, and a magneto-elastic beam sys-
tem �27�. Equation �1� has also motivated a large number of
theoretical studies �28–33�.

In this paper, we concentrate on a nonlinear extension of
Eq. �1� of the form

dy

dt
= a�y − y�t − 1� − f�y�� , �2�

where f�y�= �y�yn �n=1,3,…�. The simple case of a quadratic
nonlinearity given by

dy

dt
= a�y − y�t − 1� − �y�y� �3�

has recently been studied as a model for the oscillations of
the exchange rate around its natural value �34�. The first two
terms in Eq. �3� describe the growth of the exchange rate by
comparing rates at time t and time t−1, respectively. If the
exchange rate increases because y�t��y�t−1�, it is worth-
while to purchase foreign currency. Hence, the demand for
foreign currency goes up and the exchange rate will continue
to increase. On the contrary, if the exchange rate decreases
because y�t��y�t−1�, the tendency will be to sell foreign
currency and the demand will go down. At some time, agents
will realize that the absolute deviation �y�t�� increases and
they will start to trade. The last term in Eq. �3� describes this
effect. Since dy /dt=−�y�y=−y2 if y�0 and dy /dt=−�y�y
=y2 if y�0, �y� will continuously decrease. In practice, the
depreciation �or appreciation� of the domestic currency lead-
ing to a growth of �y� and the rescuing nonlinear feedback are
competing and we intuitively expect an oscillatory regime.
The derivation of the original model equation, dx /dt=a�x
−x�t−1��−b�x�x, which exhibits two parameters is carefully
explained in Ref. �37�. A delay-difference equation similar to
the DDE is studied in Ref. �38�. Brunovský et al. �35� proved
the existence of a periodic solution for all a�1. Later,
Walther �36� proved that the periodic orbits arise in a bifur-

PHYSICAL REVIEW E 72, 066206 �2005�

1539-3755/2005/72�6�/066206�5�/$23.00 ©2005 The American Physical Society066206-1

http://dx.doi.org/10.1103/PhysRevE.72.066206


cation from equilibrium at a=1, with the minimal period of
the oscillations tending to infinity as a→1. But the way the
period and the amplitude of the oscillations change with re-
spect to a−1 as a approaches 1 is an open problem and is the
main motivation of this paper. Figure 1 shows the numerical
bifurcation diagram of the periodic solutions of Eq. �3�. The
bifurcation at a=1 is not a Hopf or a homoclinic bifurcation
because both the amplitude and the frequency go to zero as
we approach the bifurcation point. In this paper, we use sin-
gular perturbation techniques �40,41� and construct an
asymptotic solution of Eq. �2� valid for a close to 1. We omit
all rigorous proofs which would require different tools. The
scaling laws for the amplitude and the period of the oscilla-
tions strongly differ from the usual bifurcation laws. For Eq.
�3�, we find that the extrema of oscillations yM and the period
T behave like

yM � a − 1 and T � �a − 1�−1/2, �4�

respectively, as a→1+.
The plan of the paper is as follows. The scaling of the

variables y and t with respect to the small deviation a−1 is
analyzed in Sec. II. In Sec. III, we construct the leading
approximation of the solution of Eq. �2�. The bifurcation
equation is then investigated in detail and we obtain expres-
sions for the maxima and the period of the oscillations. In
Sec. IV, we briefly discuss the mathematical and physical
interests of our results.

II. SCALINGS

Numerical simulations of Eq. �3� for values of a close to
1 indicate that the oscillations are nearly harmonic in time

and become slower as a→1+. This motivates an expansion
of y�t−1� as y�t−1�=y�t�−y��t�+ 1

2 y��t�− 1
6 y��t�+¯ where

prime means differentiation with respect to time t. Equation
�2� then becomes an ordinary differential equation given by

y� = a�y� −
1

2
y� +

1

6
y� + ¯ − f�y�� , �5�

where f�y�= �y�yn �n=1,3,…�. The numerical solution also
suggests we seek a small amplitude solution. In order to find
the right scalings of y , t with respect to the deviation a−1,
we introduce the new variables u and s

y = �pu and s = �qt , �6�

where p�0 and q�0. The small parameter � is defined by
means of the deviation a−1 as

a − 1 = �rc , �7�

where c= ±1 and r�0. After expanding y�t−1�=y�s−�q� in
Taylor series and inserting Eqs. �6� and �7� into Eq. �2�, we
find

�p+q+rcu� + �1 + �rc��− 1
2�p+2qu� + 1

6�p+3qu� + ¯

− ��n+1�p�u�un� = 0, �8�

where prime now means differentiation with respect to time
s. Equation �8� is the equation of a second order nonlinear
oscillator with weak damping if �i� the u� and �u�un terms are
the dominant terms as �→0 and �ii� the u� and u� terms are
smaller in magnitude than the leading terms. The first condi-
tion is verified if p+2q= �n+1�p, or equivalently, if

p = 2q/n . �9�

The second condition is verified if

p + q + r = p + 3q � p + 2q . �10�

The equality implies

r = 2q �11�

and the inequality is automatically verified with Eq. �11�.
Without loss of generalities, we choose q=1. Then, p=2/n
from Eq. �9� and r=2 from Eq. �11�.

III. BIFURCATION EQUATION

We now construct an asymptotic solution that follows the
scalings laws discussed in the previous section. Specifically,
we seek a solution of the form

y = �2/n�u0�s� + �u1�s� + ¯ � , �12�

where s	�t and �	
�a−1� /c �c= ±1�. After expanding
y�t−1�=y�s−�� as

y�s − �� = y − �y� + 1
2�2y� − 1

6�3y� + ¯ , �13�

where prime means differentiation with respect to s, we in-
troduce Eq. �12� and a−1=�2c into Eq. �2� and equate to
zero the coefficients of each power of �. The leading order
problem is O��2+2/n� and is given by

FIG. 1. Numerical bifurcation diagram of the stable oscillations
of Eq. �2� with n=1 showing the period T �top� and the extrema of
y �bottom�. Close to a=1, the period and the extrema follow an
inverse square-root law and a linear law, respectively.
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1
2u0� + f�u0� = 0. �14�

Equation �14� is conservative and does not depend on the
bifurcation parameter. It admits a one parameter family of
periodic solutions. The first integral is

1

2
u0�

2 + F�u0� = E , �15�

where E is the constant of integration or energy and F�u0�
	2�u0f�u�du, i.e.,

F�u0� =
2

n + 2
u0

n+2 �u0 � 0� and −
2

n + 2
u0

n+2 �u0 � 0� .

�16�

For every E�0, there exists a periodic orbit in the phase
plane �u0 ,u0��. The maxima of u0 and u0� appear when u0�=0
and u0=0, respectively. Using Eq. �16�, we then find

uM = �n + 2

2
E1/�n+2�

and uM� = �2E�1/2. �17�

See Fig. 2. Because the amplitude of the oscillations as a
function of the bifurcation parameter is still unknown, we
need to explore the next problem for u1.

The problem for u1 is O��3+2/n� and is given by

Lu1 	
1

2
u1� + f��u0�u1 = 1

6u0� + cu0�. �18�

To solve Eq. �18�, we note that the linear operator Lu has a
one-dimensional null space spanned by u0�. The operator is
self-adjoint, meaning that the solution of the adjoint linear
problem is u0�. Applying the Fredholm alternative, the right-
hand side of Eq. �18� needs to satisfy the solvability condi-
tion �42�

�
0

P �1

6
u0� + cu0�u0�ds = 0 �19�

where P= P�E� is the period of u0�t� corresponding to a
value of E�0. For algebraic clarity, we denote from now on
u�t� as the periodic solution u0�t� of period P. From Eqs. �14�
and �15�, u�t� satisfies the equations

u� = − 2u1+n and u� =
2�E −
2

n + 2
un+2 �20�

for u�0 and u��0. We determine u� as u�=−2�n+1�unu�
and introduce a change of variable from s to u using ds
=du /
2�E− �2/ �n+2��un+2� from the expression of u� in Eq.
�20�. After simplifying, the integral �19� becomes

−
n + 1

3
�

0

uM

un
E −
2

n + 2
un+2 du

+ c�
0

uM 
E −
2

n + 2
un+2 du = 0. �21�

Introducing u=uMv, Eq. �21� can be simplified as

−
n + 1

3
uM

n I1 + cI2 = 0, �22�

where I1 and I2 are the following two definite integrals:

I1 	 �
0

1

vn
1 − vn+2 dv and I2 	 �
0

1

1 − vn+2 dv

�23�

which contain no parameters. Therefore, we may extract uM
n

from �22� and obtain uM as

uM = � 3I2

�n + 1�I1
c1/n

. �24�

FIG. 3. Comparison between the numerical bifurcation diagram
of Eq. �2� with n=3 �dots� and the analytical bifurcation diagram
given by Eqs. �25� and �28� with n=3 �dashed lines�. As a→1+, the
period �top� and the extrema �bottom� change like �a−1�−1/2 and
�a−1�1/3, respectively.

FIG. 2. For each value of the energy E�0, there is a periodic
orbit. Case n=1. The maxima of u0 and u0� are uM = �3E /2�1/3 and
uM� = �2E�1/2, respectively.
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In terms of the original variable, the maximum of the
oscillations is given by yM =�2/nuM and using Eq. �24�, we
obtain

yM = � 3I2

�n + 1�I1
�a − 1�1/n

. �25�

We next concentrate on the period. Using Eq. �15�, we de-
termine the period in s as

P =
4

2
�

0

uM 1


E − 2u0
n+2/�n + 2�

du0 =
2
n + 2

uM
n/2 I3 �26�

where

I3 	 �
0

1 1

1 − vn+2

dv . �27�

The expression �26� then implies a period in time t given by

T = 2
n + 2I3
1

yM
n/2 . �28�

Figure 3 illustrates the case n=3. The period follows an in-
verse square-root law as for the case n=1 and the extrema
follows a cubic-root law. The broken line corresponds to the
asymptotic approximations given by Eqs. �25� and �28�
where the integrals have been computed numerically.

IV. DISCUSSION

We examined a class of DDEs described by Eq. �2� with
f�y�= �y�yn and showed that there exists a bifurcation to long

period oscillations exhibiting the scaling laws

yM � �a − 1�1/n and T � �a − 1�−1/2 �29�

as a→1+. As the nonlinearity becomes stronger �n becomes
larger�, the amplitude of the oscillations exhibits a progres-
sively larger scaling law, but the period keeps the same scal-
ing law whatever n. These unusual properties are not related
to the absolute value �y� in f�y�. We have analyzed the case
f�y�=y2+n �n=1,3,…� and obtained similar results. Math-
ematically, the bifurcation point a=1 corresponds to a double
zero eigenvalue and can be analyzed by center manifold
techniques �39,43�. We have verified that the case n=1 can
be reduced to Eq. �8.38� in Ref. �43�, p. 318 with g00���
=g10���=g02���=0. However, we cannot make the succes-
sive change of coordinates described in Ref. �43� because the
nonlinear function involves an absolute value. To investigate
our bifurcation problem, we preferred to use expansion tech-
niques and apply solvability conditions.

From a physical point of view, this bifurcation is interest-
ing because it suggests a new mechanism for the generation
of low-frequency oscillations. Although, we may not avoid
the instability of the basic solution y=0 as soon as a sur-
passes 1, the bifurcation is as best we may wish in the con-
text of control. Slightly above a=1, the oscillations are slow
and of small amplitude so that the physical impact of the
instability remains limited.
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